View CHEMDNER (public)

2012-12-31 12:32 by krallinger | Version 1 | Rating Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star
Rating
Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star Overall (based on 0 votes)
Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star Interesting
Empty StarEmpty StarEmpty StarEmpty StarEmpty StarEmpty Star Documentation
Summary

Chemical compound and drug name recognition task (BioCreative IV: http://www.biocreative.org/tasks/biocreative-iv/chemdner )

License
CC-BY-SA 3.0
Tags
Biocreative bioinformatics chemical CHEMNER chemoinformatics Classification compound CRF document entity HMM indexing Learning machine mining Named recognition text
Tasks
Multi-Task Classification
Completeness of this item currently: 83%.
You can edit this item to add more meta information and make use of the site's premium features.
Description

CALL FOR PARTICIPATION: CHEMDNER task: Chemical compound and drug name recognition task.

TASK GOAL AND MOTIVATION

The goal of this task is to promote the implementation of systems that are able to detect mentions in text of chemical compounds and drugs. The recognition of chemical entities is also crucial for other subsequent text processing strategies, such as detection of drug-protein interactions, adverse effects of chemical compounds or the extraction of pathway and metabolic reaction relations. A range of different methods have been explored for the recognition of chemical compound mentions including machine learning based approaches, rule-based systems and different types of dictionary-lookup strategies.

We foresee a considerable interest in the result of this task by the NLP/text mining community on one side, as well as by the bioinformatics, drug discovery/biomedicine and chemoinformatics communities on the other side. As has been the case in previous BioCreative efforts (resulting in high impact papers in the field), we expect that successful participants will have the opportunity to publish their system descriptions in a journal article.

CHEMDNER DESCRIPTION

The CHEMDNER is one of the tracks posed at the BioCreative IV community challenge (http://www.biocreative.org).

We invite participants to submit results for the CHEMDNER task providing predictions for one or both of the following subtasks:

a) Given a set of documents, return for each of them a ranked list of chemical entities described within each of these documents [Chemical document indexing sub-task]

a) Provide for a given document the start and end indices corresponding to all the chemical entities mentioned in this document [Chemical entity mention recognition sub-task].

For these two tasks the organizers will release training and test data collections. The task organizers will provide details on the used annotation guidelines; define a list of criteria for relevant chemical compound entity types as well as selection of documents for annotation.

REGISTRATION

Teams can participate in the CHEMDNER task by registering for track 2 of BioCreative IV. You can register additionally for other tracks too. To register your team go to the following page that provides more detailed instructions: http://www.biocreative.org/news/biocreative-iv/team/

Mailing list and contact information

You can post questions related to the CHEMDNER task to the BioCreative mailing list. To register for the BioCreative mailing list, please visit the following page: http://biocreative.sourceforge.net/mailing.html

WORKSHOP

CHEMDNER is part of the BioCreative evaluation effort. The BioCreative Organizing Committee will host the BioCreative IV Challenge evaluation workshop (http://www.biocreative.org/events/biocreative-iv/CFP/) at NCBI, National Institutes of Health, Bethesda, Maryland, on October 7-9, 2013

CHEMDNER TASK ORGANIZERS

Martin Krallinger, Spanish National Cancer Research Center (CNIO) Obdulia Rabal, University of Navarra, Spain Julen Oyarzabal, University of Navarra, Spain Alfonso Valencia, Spanish National Cancer Research Center (CNIO)

REFERENCES

  • Vazquez, M., Krallinger, M., Leitner, F., & Valencia, A. (2011). Text Mining for Drugs and Chemical Compounds: Methods, Tools and Applications. Molecular Informatics, 30(6‐7), 506-519.
  • Corbett, P., Batchelor, C., & Teufel, S. (2007). Annotation of chemical named entities. BioNLP 2007: Biological, translational, and clinical language processing, 57-64.
  • Klinger, R., Kolářik, C., Fluck, J., Hofmann-Apitius, M., & Friedrich, C. M. (2008). Detection of IUPAC and IUPAC-like chemical names. Bioinformatics, 24(13), i268-i276.
  • Hettne, K. M., Stierum, R. H., Schuemie, M. J., Hendriksen, P. J., Schijvenaars, B. J., Mulligen, E. M. V., ... & Kors, J. A. (2009). A dictionary to identify small molecules and drugs in free text. Bioinformatics, 25(22), 2983-2991.
  • Yeh, A., Morgan, A., Colosimo, M., & Hirschman, L. (2005). BioCreAtIvE task 1A: gene mention finding evaluation. BMC bioinformatics, 6(Suppl 1), S2.
  • Smith, L., Tanabe, L. K., Ando, R. J., Kuo, C. J., Chung, I. F., Hsu, C. N., ... & Wilbur, W. J. (2008). Overview of BioCreative II gene mention recognition. Genome Biology, 9(Suppl 2), S2.
URLs
http://www.biocreative.org/tasks/biocreative-iv/chemdner
Publications
    revision 1
    by krallinger on 2012-12-31 12:32

    No one has posted any comments yet. Perhaps you would like to be the first?

    Leave a comment

    To post a comment, please sign in.

    This item was downloaded 0 times and viewed 4782 times.

    To submit a result, please sign in.

    Disclaimer

    We are acting in good faith to make datasets submitted for the use of the scientific community available to everybody, but if you are a copyright holder and would like us to remove a dataset please inform us and we will do it as soon as possible.

    Data | Task | Method | Challenge

    Acknowledgements

    This project is supported by PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning)
    PASCAL Logo
    http://www.pascal-network.org/.