View regression-datasets abalone (public)
























- Summary
(No information yet)
- License
- unknown (from Weka repository)
- Dependencies
- Tags
- arff slurped Weka
- Attribute Types
- Integer,Floating Point,String
- Download
-
# Instances: 4177 / # Attributes: 9
HDF5 (450.2 KB) XML CSV ARFF LibSVM Matlab OctaveFiles are converted on demand and the process can take up to a minute. Please wait until download begins.
You can edit this item to add more meta information and make use of the site's premium features.
- Original Data Format
- arff
- Name
- 'abalone'
- Version mldata
- 0
- Comment
Title of Database: Abalone data
Sources:
(a) Original owners of database: Marine Resources Division Marine Research Laboratories - Taroona Department of Primary Industry and Fisheries, Tasmania GPO Box 619F, Hobart, Tasmania 7001, Australia (contact: Warwick Nash +61 02 277277, wnash@dpi.tas.gov.au)
(b) Donor of database: Sam Waugh (Sam.Waugh@cs.utas.edu.au) Department of Computer Science, University of Tasmania GPO Box 252C, Hobart, Tasmania 7001, Australia
(c) Date received: December 1995
- Past Usage:
Sam Waugh (1995) "Extending and benchmarking Cascade-Correlation", PhD thesis, Computer Science Department, University of Tasmania.
-- Test set performance (final 1044 examples, first 3133 used for training): 24.86% Cascade-Correlation (no hidden nodes) 26.25% Cascade-Correlation (5 hidden nodes) 21.5% C4.5 0.0% Linear Discriminate Analysis 3.57% k=5 Nearest Neighbour (Problem encoded as a classification task)
-- Data set samples are highly overlapped. Further information is required to separate completely using affine combinations. Other restrictions to data set examined.
David Clark, Zoltan Schreter, Anthony Adams "A Quantitative Comparison of Dystal and Backpropagation", submitted to the Australian Conference on Neural Networks (ACNN'96). Data set treated as a 3-category classification problem (grouping ring classes 1-8, 9 and 10, and 11 on).
-- Test set performance (3133 training, 1044 testing as above): 64% Backprop 55% Dystal -- Previous work (Waugh, 1995) on same data set: 61.40% Cascade-Correlation (no hidden nodes) 65.61% Cascade-Correlation (5 hidden nodes) 59.2% C4.5 32.57% Linear Discriminate Analysis 62.46% k=5 Nearest Neighbour
- Relevant Information Paragraph:
Predicting the age of abalone from physical measurements. The age of abalone is determined by cutting the shell through the cone, staining it, and counting the number of rings through a microscope -- a boring and time-consuming task. Other measurements, which are easier to obtain, are used to predict the age. Further information, such as weather patterns and location (hence food availability) may be required to solve the problem.
From the original data examples with missing values were removed (the majority having the predicted value missing), and the ranges of the continuous values have been scaled for use with an ANN (by dividing by 200).
Data comes from an original (non-machine-learning) study:
Warwick J Nash, Tracy L Sellers, Simon R Talbot, Andrew J Cawthorn and Wes B Ford (1994) "The Population Biology of Abalone (_Haliotis_ species) in Tasmania. I. Blacklip Abalone (_H. rubra_) from the North Coast and Islands of Bass Strait", Sea Fisheries Division, Technical Report No. 48 (ISSN 1034-3288)
Number of Instances: 4177
Number of Attributes: 8
Attribute information:
Given is the attribute name, attribute type, the measurement unit and a brief description. The number of rings is the value to predict: either as a continuous value or as a classification problem.
Name Data Type Meas. Description ---- --------- ----- ----------- Sex nominal M, F, and I (infant) Length continuous mm Longest shell measurement Diameter continuous mm perpendicular to length Height continuous mm with meat in shell Whole weight continuous grams whole abalone Shucked weight continuous grams weight of meat Viscera weight continuous grams gut weight (after bleeding) Shell weight continuous grams after being dried Rings integer +1.5 gives the age in years
Statistics for numeric domains:
Length Diam Height Whole Shucked Viscera Shell Rings Min 0.075 0.055 0.000 0.002 0.001 0.001 0.002 1 Max 0.815 0.650 1.130 2.826 1.488 0.760 1.005 29 Mean 0.524 0.408 0.140 0.829 0.359 0.181 0.239 9.934 SD 0.120 0.099 0.042 0.490 0.222 0.110 0.139 3.224 Correl 0.557 0.575 0.557 0.540 0.421 0.504 0.628 1.0
Missing Attribute Values: None
Class Distribution:
Class Examples ----- -------- 1 1 2 1 3 15 4 57 5 115 6 259 7 391 8 568 9 689 10 634 11 487 12 267 13 203 14 126 15 103 16 67 17 58 18 42 19 32 20 26 21 14 22 6 23 9 24 2 25 1 26 1 27 2 29 1 ----- ---- Total 4177
Num Instances: 4177 Num Attributes: 9 Num Continuous: 8 (Int 1 / Real 7) Num Discrete: 1 Missing values: 0 / 0.0%
name type enum ints real missing distinct (1)
1 'Sex' Enum 100% 0% 0% 0 / 0% 3 / 0% 0% 2 'Length' Real 0% 0% 100% 0 / 0% 134 / 3% 0% 3 'Diameter' Real 0% 0% 100% 0 / 0% 111 / 3% 0% 4 'Height' Real 0% 0% 100% 0 / 0% 51 / 1% 0% 5 'Whole weight' Real 0% 0% 100% 0 / 0% 2429 / 58% 31% 6 'Shucked weight' Real 0% 0% 100% 0 / 0% 1515 / 36% 10% 7 'Viscera weight' Real 0% 0% 100% 0 / 0% 880 / 21% 3% 8 'Shell weight' Real 0% 0% 100% 0 / 0% 926 / 22% 8% 9 'Class_Rings' Int 0% 100% 0% 0 / 0% 28 / 1% 0%
- Names
- Sex,Length,Diameter,Height,Whole weight,Shucked weight,Viscera weight,Shell weight,Class_Rings,
- Types
- nominal:M,F,I
- numeric
- numeric
- numeric
- numeric
- numeric
- numeric
- numeric
- numeric
- Data (first 10 data points)
Sex Length Diam... Height Whol... Shuc... Visc... Shel... Clas... M 0.455 0.365 0.095 0.514 0.2245 0.101 0.15 15 M 0.35 0.265 0.09 0.2255 0.0995 0.0485 0.07 7 F 0.53 0.42 0.135 0.677 0.2565 0.1415 0.21 9 M 0.44 0.365 0.125 0.516 0.2155 0.114 0.155 10 I 0.33 0.255 0.08 0.205 0.0895 0.0395 0.055 7 I 0.425 0.3 0.095 0.3515 0.141 0.0775 0.12 8 F 0.53 0.415 0.15 0.7775 0.237 0.1415 0.33 20 F 0.545 0.425 0.125 0.768 0.294 0.1495 0.26 16 M 0.475 0.37 0.125 0.5095 0.2165 0.1125 0.165 9 F 0.55 0.44 0.15 0.8945 0.3145 0.151 0.32 19 ... ... ... ... ... ... ... ... ...
- Description
A jarfile containing 30 regression datasets collected by Luis Torgo (regression-datasets.jar, 10,090,266 Bytes).
- URLs
- (No information yet)
- Publications
- Data Source
- Measurement Details
- Usage Scenario
- revision 1
- by mldata on 2010-11-06 09:58
No one has posted any comments yet. Perhaps you would like to be the first?
Leave a comment
To post a comment, please sign in.This item was downloaded 2839 times and viewed 2462 times.
No Tasks yet on dataset regression-datasets abalone
Submit a new Task for this Data itemDisclaimer
We are acting in good faith to make datasets submitted for the use of the scientific community available to everybody, but if you are a copyright holder and would like us to remove a dataset please inform us and we will do it as soon as possible.
Acknowledgements
This project is supported by PASCAL (Pattern Analysis, Statistical Modelling and Computational Learning)
http://www.pascal-network.org/.